Unification of Idempotent Functions

نویسندگان

  • Stefan Kühner
  • Chris Mathis
  • Peter Raulefs
  • Jörg H. Siekmann
چکیده

For a l m o s t as l o n g as a t t e m p t s a t p r o v i n g theorems by mach ines have been made, a c r i t i c a l p r o b l e m has been w e l l known: E q u a t i o n a l a x i o m s , i f l e f t w i t h o u t p r e c a u t i o n s i n t he d a t a base o f a n a u t o m a t i c t heo rem p r o v e r (ATP) , w i l l f o r c e the ATP t o g o a s t r a y . Four approaches t o cope w i t h e q u a l i t y axioms have been p r o p o s e d : (1) T o w r i t e t h e axioms i n t o t h e d a t a b a s e , and use an a d d i t i o n a l r u l e o f i n f e r e n c e , such as p a r a m o d u l a t i o n . (2) T o use s p e c i a l " r e w r i t e r u l e s " . (3) T o d e s i g n s p e c i a l i n f e r e n c e r u l e s i n c o r p o r a t i n g t h e s e a x i o m s . (4) T o d e v e l o p s p e c i a l u n i f i c a t i o n a l g o r i t h m s i n c o r p o r a t i n g t h e s e a x i o m s . A t l e a s t f o r e q u a t i o n a l a x i o m s , the? l a s t approach (4) appears t o be most p r o m i s i n g . So f a r we have c o n c e n t r a t e d on t h e ax ioms o f asso c i a t i v i t y , c o m m u t a t i v i t y , i dempotence and v a r i o u s c o m b i n a t i o n s o f t h e s e . I n t h i s p a p e r , a l g o r i t h m s a re p r e s e n t e d f o r t h e o r i e s o f i dempotence and f o r idempotence t o g e t h e r w i t h c o m m u t a t i v i t y . I d e m p o t e n t f u n c t i o n s appear i n g roup t h e o r y , p r a c t i c a l exampl e s b e i n g p r o o f s abou t s u b s t i t u t i o n s wh i ch a re i dempoten t i f t h e y a re i n no rma l f o r m . See e . g . t h e p r o o f o f Theorem 3-2 i n t h i s p a p e r . A h i s t o r i c a l example i s how Luckham's p rogram v e r i f i e r f ound t h e c o r r e c t n e s s o f R o b i n s o n ' s u n i f i c a t i o n a l g o r i t h m o n l y a f t e r t h e idempotence f o r u n i f i e r s had been a d d e d . The main r e s u l t s a re t h a t t h e u n i f i c a t i o n p r o b l e m f o r i dempotence i s d e c i d a b l e , a n d t h e s e t o f a l l u n i f i e r s i s f i n i t e , b u t n o t a s i n g l e t o n i n g e n e r a l . 2 . A l g o r i t h m f o r I U n i f i c a t i o n 2 . 1 . I n t u i t i v e O v e r v i e w . Our a l g o r i t h m u n i f y i n g two te rms s and t i s s p l i t up i n t o two i n t e r l o c k i n g p a r t s : (1) C o l l a p s i n g p h a s e : In b o t h s and t we l o o k f o r sub te rms ( r ^ , ^ ) s . t . r and r can be u n i f i e d by a s u b s t i t u t i o n p to r . Then , a p p l y i n g p to s and t causes sub te rms ( r , r 2 ) t o " c o l l a p s e " t o r , g e n e r a t i n g a new u n i f i c a t i o n p r o b l e m . (2) R u n i f i c a t i o n phase,: U n i f i c a t i o n p rob lems r e s u l t i n g f rom t h e c o l l a p s i n g phase are s o l v e d b y t h e a l g o r i t h m RUNIFY. E s s e n t i a l l y , RUNIFY f o l l o w s the i d e a o f R o b i n s o n ' s u n i f i c a t i o n a l g o r i t h m e x c e p t f o r t h e way an atom and a n o n a t o m i c t e r m is u n i f i e d . (RUNIFY r e t u r n s a s u c c e s s / f a i l u r e message (SUCC/ FAIL) and a s u b s t i t u t i o n (empty upon f a i l u r e ) . ) For space l i m i t a t i o n s w e can n o t s t a t e t h e f u l l a l g o r i t h m s b u t t h e f o l l o w i n g examples may i n d i c a t e t h e b a s i c i d e a : Theorem P r o v i n g l : Kuhner 528

منابع مشابه

A Machine Checked Model of Idempotent MGU Axioms For a List of Equational Constraints

Machine checked proofs of type inference algorithms often axiomatize MGU behavior as a set of axioms. Idempotent MGUs for a list of equational constraints are needed to reason about the correctness of Wand’s type inference algorithm and our extension of it. To characterize the behavior of idempotent MGUs, we propose a set of seven axioms; four of which have been proven in our earlier paper, whe...

متن کامل

The Exact Unification Type of Commutative Theories

The exact unification type of an equational theory is based on a new preorder on substitutions, called the exactness preorder, which is tailored towards transferring decidability results for unification to disunification. We show that two important results regarding the unification type of commutative theories hold not only for the usual instantiation preorder, but also for the exactness preord...

متن کامل

A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent...

متن کامل

Complexity of Associative-commutative Unification Check and Related Problems *

The uniication problem for terms containing associative and commutative functions is of great importance in theorem provers based on term rewriting and resolution methods as well as in logic programming. The complexity of determining whether two such terms are uniiable was known to be NP-hard. It is proved that the problem is NP-complete by describing a nondeterministic polynomial time algorith...

متن کامل

The Unification Type of ACUI w.r.t. the Unrestricted Instantiation Preorder is not Finitary

The unification type of an equational theory is defined using a preorder on substitutions, called the instantiation preorder, whose scope is either restricted to the variables occurring in the unification problem, or unrestricted such that all variables are considered. It is known that the unification type of an equational theory may vary, depending on which instantiation preorder is used. More...

متن کامل

On the Complexity of Unification and Disunification in Commutative Idempotent Semigroups

We analyze the computational complexity of elementary uni-cation and disuniication problems for the equational theory ACI of commutative idempotent semigroups. From earlier work, it was known that the decision problem for elementary ACI-uniication is solvable in polynomial time. We show that this problem is inherently sequential by establishing that it is complete for polynomial time (P-complet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1977